Tha3_1

ON-WAFER NOISE-PARAMETER MEASUREMENTS AT NIST

Dave Walker & Jim Randa Electromagnetics Division, NIST, Boulder

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

CPEM 2006, Torino, June 2006

OUTLINE

- Theoretical framework, wave representation of noise matrix
- On-wafer calibration, reference planes, probe corrections
- Noise parameter measurement method
- Uncertainty analysis
- Results for a CMOS (NMOS) transistor
- Summary

FRAMEWORK

- Formalism follows wave representation of noise correlation matrix
- Linear two-port (amp, transistor, attenuator,...) described by

$$\begin{array}{cccc}
b_1 & a_1 & a_2 & b_2 \\
\downarrow & & \downarrow & & \downarrow \\
S & & & \downarrow & & \downarrow \\
S & & & & \downarrow & & \downarrow \\
S & & & & & \downarrow & & \downarrow \\
S & & & & & \downarrow & & \downarrow \\
S & & & & & & \downarrow & & \downarrow \\
S & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & & \downarrow & & \downarrow \\
S & & & & & & \downarrow & & \downarrow \\
S & & & & & & \downarrow & & \downarrow \\
S & & & & & & \downarrow & & \downarrow \\
S & & & & & & \downarrow & & \downarrow \\
S & & & & & & \downarrow & & \downarrow \\
S & & & & & & \downarrow & & \downarrow \\
S & & & & & & \downarrow & & \downarrow \\
S & & & & & & \downarrow & & \downarrow \\
S & & & & & & \downarrow & \downarrow \\
S & & & & & \downarrow & \downarrow \\
S & & & & & \downarrow & \downarrow \\
S & & & & & \downarrow & \downarrow \\
S & & & & & \downarrow & \downarrow \\
S & & & & & \downarrow & \downarrow \\
S & & & & & \downarrow & \downarrow \\
S & & & & & \downarrow & \downarrow \\
S & & & & & \downarrow & \downarrow \\
S & & & & & \downarrow & \downarrow \\
S & & & & & \downarrow & \downarrow \\
S & & & & \downarrow & \downarrow \\
S & & & & \downarrow & \downarrow \\
S & & & & \downarrow & \downarrow \\
S & & & & \downarrow & \downarrow \\
S & & & & \downarrow & \downarrow \\
S & & & \downarrow & \downarrow \\
S & & & \downarrow & \downarrow \\
S &$$

• Intrinsic noise correlation matrix defined by

$$\hat{N}_{ij} = \left\langle c_i c_j^* \right\rangle$$

Normalization: $|c|^2$ = spectral power

- 4 independent parameters: N_{11} , N_{22} , complex N_{12}
- Convenient to define variables referred to input by scaling $c_2 \rightarrow c_2/S_{21}$,

$$k_B X_1 \equiv \left\langle \left| c_1 \right|^2 \right\rangle = \hat{N}_{11}$$

$$k_B X_2 \equiv \left\langle \left| \frac{c_2}{S_{21}} \right|^2 \right\rangle = \frac{\hat{N}_{22}}{\left| S_{21} \right|^2}$$

$$k_B X_{12} \equiv \left\langle c_1 \left(\frac{c_2}{S_{21}} \right)^* \right\rangle = \frac{\hat{N}_{12}}{S_{21}}$$

• *X*'s have dimensions of temperature.

• In terms of X's,

n.b.: linear fit if just forward configuration.

• Also measure reverse configuration,

$$T_{1} = \frac{1}{\left(1 - \left|\Gamma_{G}\right|^{2}\right)\left|S_{12}\right|^{2}} \left\{ \frac{\left(1 - \left|\Gamma_{G}\right|^{2}\right)\left|S_{12}\right|^{2}}{\left|1 - \Gamma_{G}S_{22}\right|^{2}} T_{G} + \left|\frac{S_{12}S_{21}\Gamma_{G}}{1 - \Gamma_{G}S_{22}}\right|^{2} X_{2} + X_{1} + 2\operatorname{Re}\left[\frac{S_{12}S_{21}\Gamma_{G}X_{12}^{*}}{1 - \Gamma_{G}S_{22}}\right] \right\}$$

• Can relate *X*'s to IEEE parameters,

$$T_{2} = G_{av} \left(T_{G} + T_{e} \right) \qquad T_{e} = T_{\min} + t \frac{\left| \Gamma_{G} - \Gamma_{opt} \right|^{2}}{\left(1 - \left| \Gamma_{G} \right|^{2} \right) \left| 1 + \Gamma_{opt} \right|^{2}} \qquad t = \frac{4R_{n}T_{0}}{Z_{0}}$$

X's \rightarrow IEEE

$$t = X_1 + |1 + S_{11}|^2 X_2 - 2 \operatorname{Re} \left[(1 + S_{11})^* X_{12} \right],$$

$$T_{e,\min} = \frac{X_2 - \left| \Gamma_{opt} \right|^2 \left[X_1 + \left| S_{11} \right|^2 X_2 - 2 \operatorname{Re} \left(S_{11}^* X_{12} \right) \right]}{\left(1 + \left| \Gamma_{opt} \right|^2 \right)},$$

$$\Gamma_{opt} = \frac{\eta}{2} \left(1 - \sqrt{1 - \frac{4}{\left| \eta \right|^2}} \right),$$

$$\eta = \frac{X_2 \left(1 + \left| S_{11} \right|^2 \right) + X_1 - 2 \operatorname{Re} \left(S_{11}^* X_{12} \right)}{\left(X_2 S_{11} - X_{12} \right)}.$$

IEEE $\longrightarrow X$'s

$$X_{1} = T_{e,\mathrm{min}} \left(\left| S_{11} \right|^{2} - 1 \right) + \frac{t \left| 1 - S_{11} \varGamma_{opt} \right|^{2}}{\left| 1 + \varGamma_{opt} \right|^{2}} \; , \label{eq:X1}$$

$$\boldsymbol{X}_{2} = \boldsymbol{T}_{e, \min} + \frac{t \big| \boldsymbol{\Gamma}_{opt} \big|^{2}}{\big| 1 + \boldsymbol{\Gamma}_{opt} \big|^{2}} \; ,$$

$$X_{12} = S_{11} T_{e, \rm min} - \frac{t \varGamma_{opt}^* \left(1 - S_{11} \varGamma_{opt} \right)}{\left| 1 + \varGamma_{opt} \right|^2} \, .$$

Notes: $X_2 = T_{e,0}$ Bound implied by $X_1 \ge 0$

CALIBRATION, REFERENCE PLANES

- Use on-wafer multiline TRL calibration with onwafer standards. (Could use a compact cal set to save real estate.)
- Reference plane defined by center of THRU (M); can be translated since calibration also characterizes transmission line.

Noise Measurement

- NIST uses a (total power) radiometer-based method similar to its method for packaged amplifiers.
- Ambient & cryogenic (liquid nitrogen) primary standards.

 $u_{TCry} \approx 0.65 \text{ K}$

 $u_{TAmb} \approx 0.1 \text{ K}$

Noise Measurement (cont'd)

• Radiometer, switch housing with ambient standard.

On-Wafer Setup

- S-parameters measured on VNA, noise on radiometer.
- Use discrete terminations on input: slow, painful, but repeatable & flexible. (Choice of input states still under study.)

UNCERTAINTIES

- Follow ISO Guide to Uncertainty in Measurement (GUM)
- Type A (statistical): obtained in the fitting process, from covariance matrix V_{ij} : $u_A(i) = \sqrt{V_{ii}}$
- Type-B uncertainties are all other uncertainties, i.e., not evaluated by statistical means.
- We "know" uncertainties in underlying quantities $(T_{G,i}, \Gamma_{G,i}, T_{out,i}, S, T_{amb}, \ldots)$; want the resulting uncertainties in noise parameters.
- Estimate them with a Monte Carlo program

• Values used for underlying uncertainties:

$$\sigma_{cor} \qquad \sigma_{uncor}$$

$$\Gamma_{G,i} \leq 0.005: \qquad 0.003 \qquad 0.004$$

$$\Gamma_{G,i} > 0.005: \qquad 0.003 \qquad 0.004$$

$$S_{21}: \qquad 0.003 \qquad 0.004$$

$$T_{amb}: \qquad 0.0 \qquad 0.5 \text{ K (rect. distr.)}$$

$$T_{in,hot}: \qquad 1 \%$$

$$T_{out,meas}: \qquad 0.8 \% \qquad 0.6 \%$$

 Will see resulting uncertainties in noise parameters below.

SOME RESULTS

- Measurements & comparisons done as part of "Kelvin Project," with IBM & RF Micro Devices (RFMD)
 - $-128\times3\times0.12$ NMOS device
 - 128 fingers of polysilicon over
 - $-3 \mu m$ wide active channel
 - 0.12 μm gate length
 - fabricated in 0.13 μm technology (by IBM)
- Bias:
 - drain voltage $V_{ds} = 1.2 \text{ V}$
 - $-J=25 \mu A/\mu m$

POSSIBLE IMPROVEMENTS

- Obvious possibility is cal of hot noise source.
- Can also use the Monte Carlo uncertainty program to test possible improvements.
- Caution: results are for NIST methods & system. Expect similar results for other systems, but ...
- "Plan" to extend program to more common or more general systems & methods.
- Possible improvement: Use of a cold (i.e., $<< T_{amb}$) input noise source.

SUMMARY

- We measure the noise parameters (with uncertainties) at an on-wafer reference plane, but do not deembed to the transistor.
- Noise performance of the devices we measure (0.12 µm gate length NMOS) is better than our ability to measure it.
- We believe we have ways to improve the measurement techniques.

Dave Walker dwalker@boulder.nist.gov 303-497-5490

Jim Randa randa@boulder.nist.gov 303-497-3150

NIST Noise publications & presentation slides available at http://boulder.nist.gov/div818/81801/Noise/index.html

